
PHYS 705: Classical Mechanics
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Reminder:

- HW #6 is out now so that you can start on it early

- Columbus Day Holiday, class will meet on Tuesday (Oct 12)

- Be careful with online resources
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HW #4 2.16: Conserved Physical Quantities

There is a very strong link between Symmetry and Conservation Theorems:
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Energy Conservation and Time Invariance
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Energy Conservation and Time Invariance

Conservation of h (Jacobi Integral):
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...recall

Or, vice versa,                                                   h is NOT conserved                                                0
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HW #4 2.16 (Conservation of E and h)
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What physical system does this 

ODE describes?
What are the conserved quantities?

Transform the system with a point transform: 2ts e q
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Now, what are the conserved quantities?



HW #4 2.16 (Conservation of E and h)
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Also,                   are fixed parameters (“constants”) in the problem BUT 

they are not Constants of Motion nor conserved quantities !

 and k 



Two-Body Central Force Problem

Set up of the general problem: 2 masses interact via forces directed along 

the line that connects them (central force): strong form of 3rd law

First Step: Central force problems can be reduced to an effective 1-body problem:
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Instead of using            , use            (CM & relative position)1 2&r r &R r

Change to generalized coordinates: CM position R and Relative position r,

8



Two-Body Central Force Problem

So,
2 21 2
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R does not appear in L (cyclic) so that EL equation for R will only give:

M constR

Pick an inertial ref. frame (CM frame)  in which CM is not

moving and we can ignore the 1st term in L.

The result is then:
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Two-Body Central Force Problem

 L will points in a constant direction fixed by initial condition motion 

has to be planar.

And, the Lagrangian is given by:

We can then analyze the problem entirely on a plane     to L using polar coord.

 2 2 2 ( )
2

m
L r r U r   (where m= is the reduced mass)

 U(r)= U(r) is central, the problem will be cyclic in an angular variable 

about any fixed axis about O  so that angular momentum is 

conserved.
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Two-Body Central Force Problem

Summary:  We get 2 EOMs and 2 integrals of motion (l, E) for this problem.
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Graphical Analysis of Central Force Problem

Using the concept of an effective potential, one can get an useful 

qualitative understanding of the problem without actually integrating!

Let consider the r equation:

The last two terms combined can be 

considered as an effective force 

This looks like a 1D problem: a single particle moving in 1 dimension under the 

influence of the effective force,
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Central Force Problem: Inverse Square Force

'U

r

turning pts (apsides) 0r 

U

2 0 ( )E E unbounded 

origin

minr

minr

2E

1E

1r 2r

1 0 ( )E E bounded 

1r
2r

0E

0 ( )E E circular

13



apside

apside

Orbits in Central Force Problem

To construct the full orbit, one can reflect this basic segment along the axis 

connecting the apside and the origin symmetrically.
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Condition for Stable Closed Orbits
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Bartard’s Theorem (1873) states that only the inverse square force (n = -2) 

and Hooke’s law (n = 1) give rise to closed orbits.

Consider a power law force law: ( ) nF r kr 
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Both                    give rational solutions and they will give closed orbits !2, 1n  
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Kepler’s problem: Orbit Equation r = r( )

- Finally, putting our results together, we have the following orbit equation 

in terms of the two constants of motion E and l:
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Laplace-Runge-Lenz Vector

: A is a fixed vector in space and it is related to the 

“closed-ness” of the orbits in the Kepler’s system.
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(L, E, & A amount to 7 constants of motion but since they are inter-related, there are 

redundant info.)

A ˆmkr

p L
1r A

ˆmkr

p L
3r

A

ˆmkrp L

2r

For three diff 
positions          , 
A remains 
constant !

1,2,3r

17


